Занятие № 5. «Измерение коэффициента ошибок в цифровом тракте»

В данной работе при помощи программно-определяемой радиосистемы HackRF и среды программирования GnuRadio производится экспериментальная оценка надежности цифровых методов модуляции: двухпозиционная амплитудная манипуляция (AM), 4-AM, квадратурно-фазовая модуляция (КФМ), 8-ФМ и квадратурно-амплитудная модуляция 16-КАМ.

Оценка надежности производится путем измерения коэффициента битовой ошибки (BER) в зависимости от отношения сигнал-шум ОСШ and E_b/N_o , соответственно ОСШ= $(E_b*6\mu T/cumBon)/(N_o*BW)=E_b/N_o*$ (бит/симBon)/BW

Порядок выполнения работы:

 В правой панели из группы Источники - «Waveform Generators», выберите блок Источник случайного сигнала – «Random Source». Переместите выбранный блок в рабочее поле. Дважды кликните на блоке "Random Source» и установите тип выходных данных в значение байт - «Byte», для АМ максимально значение должно быть равно 2, количество отсчетов 10 000 000 (можно записать, как 10М), и повторение в положение выкл. - «No». Пример настройки блока Источник случайного сигнала изображен на следующем снимке экрана.

1	Properties: Random Source									
	General Advanced Documentation									
	ID	analog_random_source_x_0								
	Output Type	Byte 🔻								
	Minimum	0								
	Maximum	2								
	Num Samples	10M								
	Repeat	No 🔽								
	,									

 Выберите блок Переменная - «Variable» из группы Переменные - «Variables» переместите блок в рабочую область и присвойте идентификатор переменной ID равным "symbol», а значение «1, -1» (для двухпозиционной AM). Блок Переменная не требует соединения с другими блоками, после настройки блок примет вид:

Variable				
ID: symbol				
Value: 1, -1				

Подсказка:

• среднеквадратическое значение амплитуды сигнала $\sigma = \sqrt{\frac{1^2 + 1^2}{2}} = 1$, а амплитуда

шума = $\sqrt{N_0/2}$;

- для обеспечения *OCШ* = 10 · log₁₀ (1/*N*₀) = 0 дБ, *N*₀ = 1 амплитуда шума = 0.707;
- для обеспечения *ОСШ* = 1 дБ, *N*₀ = 0,7938 амплитуда шума = 0.63.
- 3. Добавьте вторую *Переменную* из группы блоков *Переменные* определите идентификатор переменной равным "value» и присвойте значение «0, 1» (для двухпозиционной AM).
- 4. Добавьте блок Преобразователя "Chunks to Symbols» из группы разные преобразования "Misc Conversions» и измените тип данных на «Byte», таблицу символов на symbol», и размерность Dimension = 1.
- 5.

1	Properties: Chunks to Symbols										
	General Advanced Documentation										
	ID	digital_chunks_to_symbols_xx_0									
	Input Type	Byte 🔽									
	Output Type	Float 🔻									
	Symbol Table										
	Dimension	1									
	Num Ports	1									

- 6. Кликните левой кнопкой мыши сначала на выход блока Источник случайного сигнала «Random Source», а затем на вход блока Преобразователь - «Chunks to Symbols» для объединения блоков.
- 7. Добавьте блок *Источник шума* «Noise Source» из группы *Источники* «Sources» и установите значения амплитуды шума на 0.707 (меняя амплитуду шума подбирается значение ОСШ).
- Добавьте блок Сумматора «Add» из группы Математические операторынды «Operators» и соедините блоки "Chunks to Symbols» и "Add», с блоками "Noise Source» и "Add» соответсвтенно.
- 9. Добавьте блок Групповой декодер «Constellation Decoder» из группы Модуляторы «Modulators» и установите значения поля символ равное переменной «symbol», а значения символа равным «value», и подсоедините блок к сумматору «Add».
- 10. Добавьте блок *Импорт «Import»* из группы *Разное «Misc»* и подключите библиотеку *Математика* изменив параметр *import* равным «import math». Параметр *ID* оставьте без изменений.
- 11. Добавьте блок Коэффициент ошибок «Error Rate» из группы Разное «Misc» и установите размер окна 10М (десять миллионов), а количество бит на символ определите выражением

«int(math.log(len(symbol))/math.log(2))». Выражение является интерпретируемой командой на языке Python2.7 и использует функцию из ранее импортированной в пункте 10 библиотеки Математика - math.log().

- 12. Соедините блоки Источник случайного сигнала «Random Source» и Коэффициент ошибок - «Error Rate», а затем блок Групповой декодер - «Constellation Decoder» с блоком «Error Rate» blocks.
- 13. Добавьте блок «Number Sink» из группы «Graphical Sinks» и измените тип данных на «Float», заголовок на «BER», минимальное значение = 0, максимальное значение = 1, делитель (*factor*) = 1, поле decimal places =20, average = «On», параметр show gauge = «Hide».
- 14. Соедините блок «Error Rate» и «Number Sink».
- 15. Добавьте блок Виртуальный осциллограф «Scope Sink» из группы графические приемники сигнала «Graphical Sinks» и включите режим работы виртуального осциллографа XY mode = «On».
- 16. Соедините блоки Сумматора «Add» и Осциллографа «Scope Sink».
- 17. Save the grc file and Click «Generate the flow graph» icon. Notice that there is a warning message at the bottom of the window. Solve this problem by adding «Throttle» block properly
- 18. На панели инструментов в верхнем углу нажмите кнопку запустить схему «Execute the flow graph» (или нажмите клавишу F6) для выполнения собранной блок-схемы.
- 19. Вычислите BER для двоичной AM при различных значениях амплитуды помехи

Na=	0,707	0,630	0,562	0,501	0,446	0,398	0,354	0,316
0,282	0,251	0,224	0,199	0,177	0,158	0,141	0,125	0,112

при ОСШ = 0 дБ, 1 дБ, ..., 16 дБ, соответственно постройте графическую зависимость respectively, BER от ОСШ (в логарифмическом масштабе) и опишите полученные результаты.

- 20. Чтобы графически отобразить эффект воздействия шума добавьте блок «Scope Sink» к выходу блока Сумматора «Add» и второй блок «Scope Sink» к выходу блока Преобразователя «Chunks to Symbols».
- 21. Повторите эксперимент для 4-АМ изменив в блоке *Переменная* «Variable» («ID: symbol») значения «1.342, 0.447, -0.447, -1.342», и для *Переменной* - «Variable» («ID: value») значения «0, 1, 2, 3», а в блоке Источник случайного сигнала - «Random Source» необходимо увеличить максимальное значение = 4. Подсказка) СКО сигнала $CKO = \sqrt{1,342^2 + 0,447^2 + 0,447^2 + 1,342^2/4} = 1.$
- 22. Повторите эксперимент для КФМ после изменения переменной «Variable» («ID: symbol») значениями = «0.707+0.707j, 0.707-0.707j, -0.707+0.707j, -0.707 0.707j» Подсказка) а + аj, а - аj, -а + аj, -а - аj
- 23. Повторите эксперимент для 8-ФМ и для 16-КАМ.